Automated Machine Learning with Microsoft Azure

Automated Machine Learning with Microsoft Azure

Automated Machine Learning with Microsoft Azure will help you build high-performing, accurate machine learning models in record time. It allows anyone to easily harness the power of artificial intelligence and increase the productivity and profitability of their business. With a series of clicks on a graphical user interface (GUI), novices and seasoned data scientists alike can easily train and deploy machine learning solutions to production.

This book will teach you how to use Azure AutoML with both the GUI and the Azure Machine Learning Python SDK in a careful, step-by-step fashion. First, you’ll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. Then, you’ll learn how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS).

By the time you finish Automated Machine Learning with Microsoft Azure, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. You’ll be able to show your business partners exactly how your machine learning models make predictions through automatically generated charts and graphs, earning their trust and respect.

Who this book is for

Data scientists, aspiring data scientists, machine learning engineers, and anyone interested in applying artificial intelligence or machine learning in their business will find this book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started with this machine learning book. Having a background in Python will help you implement this book’s more advanced features, but even data analysts and SQL experts will be able to train machine learning models after finishing this book.

What this book covers

Chapter 1, Introducing AutoML, begins by explaining the current state of data science and artificial intelligence in industry and why so many companies are having such a hard time extracting value from data. It explains how data scientists work, why their processes are inherently slow, and why they need to be made quicker. Finally, it introduces AutoML as the solution to achieve the return on investment required by industry.

Chapter 2, Getting Started with Azure Machine Learning Service, goes into depth in explaining the different artifacts of Azure Machine Learning and how they integrate to form end-to-end machine learning solutions. You’ll learn about datastores, datasets, compute instances, compute clusters, environments, and experiments, and how you use them to create machine learning solutions on Azure.

Chapter 3, Training Your First AutoML Model, will have you create your first AutoML model using publicly available Titanic data. You will use the Azure Machine Learning Studio GUI to upload your data into your workspace, create a dataset, and run an AutoML classification job to predict Titanic survivors. Lastly, you’ll use AutoML’s explainability features to see which factors were most vital to predicting survival.

Chapter 4, Building an AutoML Regression Solution, will help you train an AutoML regression model using the Azure Machine Learning SDK in Python. You’ll learn how to access Jupyter notebooks within Azure Machine Learning, use compute clusters for remote training on the cloud, and create an AutoML model that predicts a number. By the end of this chapter, you will be able to replicate this work for any regression problem you have in the future.

Chapter 5, Building an AutoML Classification Solution, will help you train an AutoML classification model using the Azure Machine Learning SDK in Python in two ways. First, you’ll train a binary classification model to predict one of two categories. Then, you will train a multiclass classification model to predict one of three categories. By the end of this chapter, you’ll be an expert in training all types of classification models with AutoML.

Chapter 6, Building an AutoML Forecasting Solution, looks at forecasting, one of the most common machine learning problems and one of the hardest to master. In this chapter, you’ll learn how to code a forecasting solution with AutoML, making use of advanced forecasting-specific algorithms and features. You’ll learn the ins and outs of forecasting and be able to avoid many of the common mistakes people make while forecasting.

Chapter 7, Using the Many Models Solution Accelerator, expands on how the Many Models Solution Accelerator (MMSA) is a cutting-edge Azure technology that lets companies train hundreds of thousands of models quickly and easily. Here, you will learn how to access the MMSA and adapt it to your own problems. This is a powerful code-only solution aimed at seasoned data scientists, but even novices will be able to use it by the end of this chapter.

Chapter 8, Choosing Real-Time versus Batch Scoring, explores how real-time solutions and batch solutions represent the two ways to score machine learning models. This chapter delves into common business scenarios and explains how you should choose which type of solution to create. The end of this chapter features a quiz that will test your ability to match business problems to the correct type of solution, saving you time and money.

Chapter 9, Implementing a Batch Scoring Solution, emphasizes how machine learning pipelines are Azure Machine Learning’s batch scoring solution of choice. Machine learning pipelines are containerized code where, once you create them, you can easily rerun and schedule them on an automated basis. This chapter has you use the AutoML models you created in earlier chapters to create powerful batch scoring solutions that run on a schedule of your choice.

Chapter 10, Creating End-to-End AutoML Solutions, emphasizes how Azure Data Factory (ADF) is a code-free data orchestration tool that integrates easily with machine learning pipelines. In this chapter, you’ll learn how to seamlessly move data into and out of Azure, and how to integrate that flow with your scoring pipelines. By the end of this chapter, you will understand how ADF and AMLS combine to create the ultimate data science experience.

Chapter 11, Implementing a Real-Time Scoring Solution, teaches you how to create real-time scoring endpoints hosted on AKS and Azure Container Instances (ACI). You’ll learn how to deploy AutoML models to an endpoint with a single click from the Azure Machine Learning Studio GUI as well as through Python code in a Jupyter notebook, completing your AutoML training.

Chapter 12, Realizing Business Value with AutoML, focuses on how creating an end-to-end solution is just the first step in realizing business value; you’ll also need to gain end user trust. This chapter focuses on how to gain this trust through architectural diagrams, model interpretability, and presenting results in an intuitive, easy-to-understand manner. You’ll learn how to become and be seen as a trusted, reliable partner to your business.


  • 关于本书的内容介绍、目录、详情等请在 AmazonGoolge Books 等售书网站搜索查看,本站仅展示封面作为参考。
  • 如无特殊说明,本站提供的所有pdf均为文字版(aka True PDF or Digitally Created PDF)。
  • 本站已经列出的所有图书均可以找到。
  • 收到PDF链接之后建议尽快下载或者保存到自己的百度网盘,防止链接过期失效。


扫描下方二维码添加微信号 bookyage 回复本书编号 289575 即可,我们会尽快(一般24小时之内)将本书PDF文件以百度网盘链接的形式发送给您。